Survivalist Pro
Photo: Ben Mack
Athletic performance is a complex trait that is influenced by both genetic and environmental factors. Many physical traits help determine an individual's athletic ability, primarily the strength of muscles used for movement (skeletal muscles ) and the predominant type of fibers that compose them.
No wonder it's often called the ultimate survival food. Rice. ... Dried Beans. ... Spices. ... White vinegar. ... Canned Foods. ... Bouillon Cubes....
Read More »
Most manufacturers guarantee that their ammunition will last for at least a decade. That said, ammunition can easily last beyond 10 years if it is...
Read More »Athletic performance is a complex trait that is influenced by both genetic and environmental factors. Many physical traits help determine an individual’s athletic ability, primarily the strength of muscles used for movement (skeletal muscles ) and the predominant type of fibers that compose them. Skeletal muscles are made up of two types of muscle fibers: slow-twitch fibers and fast-twitch fibers. Slow-twitch muscle fibers contract slowly but can work for a long time without tiring; these fibers enable endurance activities like long-distance running. Fast-twitch muscle fibers contract quickly but tire rapidly; these fibers are good for sprinting and other activities that require power or strength. Other traits related to athleticism include the maximum amount of oxygen the body can deliver to its tissues (aerobic capacity), muscle mass, height, flexibility, coordination, intellectual ability, and personality. Studies focused on similarities and differences in athletic performance within families, including between twins, suggest that genetic factors underlie 30 to 80 percent of the differences among individuals in traits related to athletic performance. Many studies have investigated variations in specific genes thought to be involved in these traits, comparing athletes with nonathletes. The best-studied genes associated with athletic performance are ACTN3 and ACE. These genes influence the fiber type that makes up muscles, and they have been linked to strength and endurance. The ACTN3 gene provides instructions for making a protein called alpha (α)-actinin-3, which is predominantly found in fast-twitch muscle fibers. A variant in this gene, called R577X, leads to production of an abnormally short α-actinin-3 protein that is quickly broken down. Some people have this variant in both copies of the gene; this genetic pattern (genotype) is referred to as 577XX. These individuals have a complete absence of α-actinin-3, which appears to reduce the proportion of fast-twitch muscle fibers and increase the proportion of slow-twitch fibers in the body. Some studies have found that the 577XX genotype is more common among high-performing endurance athletes (for example, cyclists and long-distance runners) than in the general population, while other studies have not supported these findings. The 577RR genotype is associated with a high proportion of fast-twitch fibers and is seen more commonly in athletes who rely on strength or speed, such as short-distance runners. The ACE gene provides instructions for making a protein called angiotensin-converting enzyme, which converts a hormone called angiotensin I to another form called angiotensin II. Angiotensin II helps control blood pressure and may also influence skeletal muscle function, although this role is not completely understood. A variation in the ACE gene, called the ACE I/D polymorphism, alters activity of the gene. Individuals can have two copies of a version called the D allele, which is known as the DD pattern, two copies of a version called the I allele, known as the II pattern, or one copy of each version, called the ID pattern. Of the three patterns, DD is associated with the highest levels of angiotensin-converting enzyme. The DD pattern is thought to be related to a higher proportion of fast-twitch muscle fibers and greater speed.
The SAS has a new twin barrel machine gun that fires 1,000 shots per minute and two bullets at a time making targets “drop like flies”. Dec 11, 2021
Read More »
During the war in Crimea, beards, moustaches and sideburns became symbols of courage and determination. Britons back home started sporting similar...
Read More »Many other genes with diverse functions have been associated with athletic performance. Some are involved in the function of skeletal muscles, while others play roles in the production of energy for cells, communication between nerve cells, or other cellular processes. Other studies have examined variations across the entire genomes (an approach called genome-wide association studies or GWAS) of elite athletes to determine whether specific areas of the genome are associated with athleticism. More than 150 different variations linked to athletic performance have been identified in these studies; however, most have been found in only one or a few studies, and the significance of most of these genetic changes have not been identified. It is likely that a large number of genes are involved, each of which makes only a small contribution to athletic performance. Athletic performance is also strongly influenced by the environment. Factors such as the amount of support a person receives from family and coaches, economic and other circumstances that allow one to pursue the activity, availability of resources, and a person’s relative age compared to their peers all seem to play a role in athletic excellence. A person’s environment and genes influence each other, so it can be challenging to tease apart the effects of the environment from those of genetics. For example, if a child and his or her parent excel at a sport, is that similarity due to genetic factors passed down from parent to child, to similar environmental factors, or (most likely) to a combination of the two? It is clear that both environmental and genetic factors play a part in determining athletic ability.
Push the point you want to sharpen with your fingers. While keeping the angle and pushing the point with your fingers, stroke the blade until it...
Read More »
Intensity 7: Very strong — Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary structures;...
Read More »Ahmetov II, Egorova ES, Gabdrakhmanova LJ, Fedotovskaya ON. Genes and Athletic Performance: An Update. Med Sport Sci. 2016;61:41-54. doi: 10.1159/000445240. Epub 2016 Jun 10. Review. PubMed: 27287076. Ahmetov II, Fedotovskaya ON. Current Progress in Sports Genomics. Adv Clin Chem. 2015;70:247-314. doi: 10.1016/bs.acc.2015.03.003. Epub 2015 Apr 11. Review. PubMed: 26231489. Webborn N, Williams A, McNamee M, Bouchard C, Pitsiladis Y, Ahmetov I, Ashley E, Byrne N, Camporesi S, Collins M, Dijkstra P, Eynon N, Fuku N, Garton FC, Hoppe N, Holm S, Kaye J, Klissouras V, Lucia A, Maase K, Moran C, North KN, Pigozzi F, Wang G. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. Br J Sports Med. 2015 Dec;49(23):1486-91. doi: 10.1136/bjsports-2015-095343. PubMed: 26582191. Free full-text available from PubMed Central: PMC4680136. Yan X, Papadimitriou I, Lidor R, Eynon N. Nature versus Nurture in Determining Athletic Ability. Med Sport Sci. 2016;61:15-28. doi: 10.1159/000445238. Epub 2016 Jun 10. Review. PubMed: 27287074.
A study published in found that at room temperature, COVID-19 was detectable on fabric for up to two days, compared to seven days for plastic and...
Read More »
Franciszek Honiok (1896 – 31 August 1939) was a Polish man who is famous for having been the first victim of World War II, on the evening of 31...
Read More »
The most popular choice throughout the real estate industry to replace “master bedroom” is “primary bedroom,” which notes the room's prominence....
Read More »
Definitely one of the cheapest and safest places to live in the world, Portugal is very popular among people leaving the US to move abroad....
Read More »