Survivalist Pro
Photo: Markus Spiske
All living organisms share several key characteristics or functions: order, sensitivity or response to the environment, reproduction, adaptation, growth and development, regulation, homeostasis, energy processing, and evolution.
Any gun can jam, no matter how well it is made, that includes Glock. There are many factors that can cause a gun to jam, such as dirt, dust, or...
Read More »
Emergency cash Be careful, though, keeping too much money in your car is never a good idea, so limit yourself to about $100.
Read More »Biology is the science that studies life, but what exactly is life? This may sound like a silly question with an obvious response, but it is not always easy to define life. For example, a branch of biology called virology studies viruses, which exhibit some of the characteristics of living entities but lack others. It turns out that although viruses can attack living organisms, cause diseases, and even reproduce, they do not meet the criteria that biologists use to define life. Consequently, virologists are not biologists, strictly speaking. Similarly, some biologists study the early molecular evolution that gave rise to life; since the events that preceded life are not biological events, these scientists are also excluded from biology in the strict sense of the term. From its earliest beginnings, biology has wrestled with three questions: What are the shared properties that make something “alive”? And once we know something is alive, how do we find meaningful levels of organization in its structure? And, finally, when faced with the remarkable diversity of life, how do we organize the different kinds of organisms so that we can better understand them? As new organisms are discovered every day, biologists continue to seek answers to these and other questions. Properties of Life All living organisms share several key characteristics or functions: order, sensitivity or response to the environment, reproduction, adaptation, growth and development, regulation, homeostasis, energy processing, and evolution. When viewed together, these nine characteristics serve to define life. Order Organisms are highly organized, coordinated structures that consist of one or more cells. Even very simple, single-celled organisms are remarkably complex: inside each cell, atoms make up molecules; these in turn make up cell organelles and other cellular inclusions. In multicellular organisms, similar cells form tissues. Tissues, in turn, collaborate to create organs (body structures with a distinct function). Organs work together to form organ systems. Sensitivity or Response to Stimuli Organisms respond to diverse stimuli. For example, plants can bend toward a source of light, climb on fences and walls, or respond to touch. Even tiny bacteria can move toward or away from chemicals (a process called chemotaxis) or light (phototaxis). Movement toward a stimulus is considered a positive response, while movement away from a stimulus is considered a negative response. Reproduction Single-celled organisms reproduce by first duplicating their DNA, and then dividing it equally as the cell prepares to divide to form two new cells. Multicellular organisms often produce specialized reproductive germline cells that will form new individuals. When reproduction occurs, genes containing DNA are passed along to an organism’s offspring. These genes ensure that the offspring will belong to the same species and will have similar characteristics, such as size and shape. Growth and Development Organisms grow and develop following specific instructions coded for by their genes. These genes provide instructions that will direct cellular growth and development, ensuring that a species’ young will grow up to exhibit many of the same characteristics as its parents. Regulation Even the smallest organisms are complex and require multiple regulatory mechanisms to coordinate internal functions, respond to stimuli, and cope with environmental stresses. Two examples of internal functions regulated in an organism are nutrient transport and blood flow. Organs (groups of tissues working together) perform specific functions, such as carrying oxygen throughout the body, removing wastes, delivering nutrients to every cell, and cooling the body. Homeostasis What is Homeostasis? Living Things Must Maintain Homeostasis. Homeostasis means “steady state”. Homeostasis is the tendency of an organism or cell to maintain a constant internal environment. Living things constantly adjust to internal and external changes. Homeostasis means to maintain dynamic equilibrium in the body. It is dynamic because it is constantly adjusting to the changes that the body’s systems encounter. It is equilibrium because body functions are kept within specific ranges or normal limits. Maintaining homeostasis requires that the body continuously monitor its internal conditions. From body temperature to blood pressure to levels of certain nutrients, each physiological condition has a particular set point. A set point is the physiological value around which the normal range fluctuates. A normal range is the restricted set of values that is optimally healthful and stable. For example, the set point for normal human body temperature is approximately 37°C (98.6°F) Physiological parameters, such as body temperature and blood pressure, tend to fluctuate within a normal range a few degrees above and below that point. Even an animal that is apparently inactive is maintaining this homeostatic equilibrium. An inability to maintain homeostasis may lead to death or a disease, a condition known as homeostatic imbalance. Homeostasis, in a general sense, refers to stability, balance, or equilibrium. Physiologically, it is the body’s attempt to maintain a constant and balanced internal environment, which requires persistent monitoring and adjustments as conditions change. Adjustment of physiological systems within the body is called homeostatic regulation, which involves three parts or mechanisms: Sensory receptors
Best Bottled Water Brand You Can Get In 2022 SMARTWATER. Smartwater's vapor-distilled water is famous for their range of hydrating electrolyte...
Read More »
These types of foods tend to score high on a scale called the satiety index. Boiled potatoes. Potatoes have been demonized in the past, but they're...
Read More »Positive Feedback Mechanism Examples for Homeostasis Negative Feedback Mechanism maintains Positive Feedback Mechanism Body Temperature Childbirth Blood pressure Blood Clotting Blood Sugar Ovulation Blood pH Lactation Negative Feedback Mechanisms Any homeostatic process that changes the direction of the stimulus is a negative feedback loop. It may either increase or decrease the stimulus, but the stimulus is not allowed to continue as it did before the receptor sensed it. In other words, if a level is too high, the body does something to bring it down, and conversely, if a level is too low, the body does something to make it go up. Hence the term negative feedback. Thermoregulation: : Thermoregulation is a process that allows your body to maintain its core internal temperature. The set point for normal human body temperature is approximately 37°C (98.6°F). Body temperature affects body activities. Body proteins, including enzymes, begin to denature and lose their function with high heat (around 50ºC for mammals). Enzyme activity will decrease by half for every ten degree centigrade drop in temperature, to the point of freezing, with a few exceptions. During body temperature regulation, temperature receptors in the skin (sensory receptor) communicate information to the brain (the control center) which signals the blood vessels and sweat glands in the skin (effectors). As the internal and external environment of the body are constantly changing, adjustments must be made continuously to stay at or near a specific value: the set point. (approximately 37°C / 98.6°F) When body temperature exceeds its normal range: When the brain’s temperature regulation center receives data from the sensors indicating that the body’s temperature exceeds its normal range, the brain (the control center) which signals the effectors: blood vessels and sweat glands in the skin. This stimulation has three major effects: Blood vessels in the skin begin to dilate allowing more blood from the body core to flow to the surface of the skin allowing the heat to radiate into the environment. As blood flow to the skin increases, sweat glands are activated to increase their output. As the sweat evaporates from the skin surface into the surrounding air, it takes heat with it. The depth of respiration increases, and a person may breathe through an open mouth instead of through the nasal passageways. This further increases heat loss from the lungs. When body temperature reduces below its normal range: In contrast, activation of the brain’s heat-gain center by exposure to cold reduces blood flow to the skin, and blood returning from the limbs is diverted into a network of deep veins. This arrangement traps heat closer to the body core and restricts heat loss. If heat loss is severe, the brain triggers an increase in random signals to skeletal muscles, causing them to contract and producing shivering. The muscle contractions of shivering release heat while using up ATP. The brain triggers the thyroid gland in the endocrine system to release thyroid hormone, which increases metabolic activity and heat production in cells throughout the body. The brain also signals the adrenal glands to release epinephrine (adrenaline), a hormone that causes the breakdown of glycogen into glucose, which can be used as an energy source. The breakdown of glycogen into glucose also results in increased metabolism and heat production. Positive Feedback Mechanism Positive feedback intensifies a change in the body’s physiological condition rather than reversing it, maintains the direction of the stimulus, possibly accelerating it. A deviation from the normal range results in more change, and the system moves farther away from the normal range. Positive feedback in the body is normal only when there is a definite end point. Childbirth and the body’s response to blood loss are two examples of positive feedback loops that are normal but are activated only when needed. Example 1: Labor and Delivery During Childbirth: The extreme muscular work of labor and delivery are the result of a positive feedback system . The first contractions of labor (the stimulus) push the baby toward the cervix (the lowest part of the uterus). The cervix contains stretch-sensitive nerve cells (the sensory receptors) that monitor the degree of stretching . These nerve cells send messages to the brain, which in turn causes the pituitary gland at the base of the brain ( control center) to release the hormone oxytocin into the bloodstream. Oxytocin causes stronger contractions of the smooth muscles in of the uterus (the effectors), pushing the baby further down the birth canal. This causes even greater stretching of the cervix. The cycle of stretching, oxytocin release, and increasingly more forceful contractions stops only when the baby comes out of the uterus. At this point, the stretching of the cervix halts, stopping the release of oxytocin. Example 2: Steps in Blood Clotting A second example of positive feedback centers on reversing extreme damage to the body. Following a penetrating wound, the most immediate threat is excessive blood loss. Less blood circulating means reduced blood pressure and reduced perfusion (penetration of blood) to the brain and other vital organs. If perfusion is severely reduced, vital organs will shut down and the person will die. The body responds to this potential catastrophe by releasing substances in the injured blood vessel wall that begin the process of blood clotting. As each step of clotting occurs, it stimulates the release of more clotting substances. This accelerates the processes of clotting and sealing off the damaged area. Clotting is contained in a local area based on the tightly controlled availability of clotting proteins. This is an adaptive, life-saving cascade of events. Energy Processing All organisms use a source of energy for their metabolic activities. Some organisms capture energy from the sun and convert it into chemical energy in food; others use chemical energy in molecules they take in as food. Levels of Organization of Living Things Living things are highly organized and structured, following a hierarchy that can be examined on a scale from small to large. The atom is the smallest and most fundamental unit of matter. It consists of a nucleus surrounded by electrons. Atoms form molecules. A molecule is a chemical structure consisting of at least two atoms held together by one or more chemical bonds. Many molecules that are biologically important are macromolecules, large molecules that are typically formed by polymerization (a polymer is a large molecule that is made by combining smaller units called monomers, which are simpler than macromolecules). An example of a macromolecule is deoxyribonucleic acid (DNA), which contains the instructions for the structure and functioning of all living organisms. Some cells contain aggregates of macromolecules surrounded by membranes; these are called organelles. Organelles are small structures that exist within cells. Examples of organelles include mitochondria and chloroplasts, which carry out indispensable functions: mitochondria produce energy to power the cell, while chloroplasts enable green plants to utilize the energy in sunlight to make sugars. All living things are made of cells; the cell itself is the smallest fundamental unit of structure and function in living organisms. (This requirement is why viruses are not considered living: they are not made of cells. To make new viruses, they have to invade and hijack the reproductive mechanism of a living cell; only then can they obtain the materials they need to reproduce.) Some organisms consist of a single cell and others are multicellular. Cells are classified as prokaryotic or eukaryotic. Prokaryotes are single-celled or colonial organisms that do not have membrane-bound nuclei; in contrast, the cells of eukaryotes do have membrane-bound organelles and a membrane-bound nucleus. In larger organisms, cells combine to make tissues, which are groups of similar cells carrying out similar or related functions. Organs are collections of tissues grouped together performing a common function. Organs are present not only in animals but also in plants. An organ system is a higher level of organization that consists of functionally related organs. Mammals have many organ systems. For instance, the circulatory system transports blood through the body and to and from the lungs; it includes organs such as the heart and blood vessels. Organisms are individual living entities. For example, each tree in a forest is an organism. Single-celled prokaryotes and single-celled eukaryotes are also considered organisms and are typically referred to as microorganisms. All the individuals of a species living within a specific area are collectively called a population. For example, a forest may include many pine trees. All of these pine trees represent the population of pine trees in this forest. Different populations may live in the same specific area. For example, the forest with the pine trees includes populations of flowering plants and also insects and microbial populations. A community is the sum of populations inhabiting a particular area. For instance, all of the trees, flowers, insects, and other populations in a forest form the forest’s community. The forest itself is an ecosystem. An ecosystem consists of all the living things in a particular area together with the abiotic, non-living parts of that environment such as nitrogen in the soil or rain water. At the highest level of organization, the biosphere is the collection of all ecosystems, and it represents the zones of life on earth. It includes land, water, and even the atmosphere to a certain extent. Art Connection Which of the following statements is false? Tissues exist within organs which exist within organ systems. Communities exist within populations which exist within ecosystems. Organelles exist within cells which exist within tissues. Communities exist within ecosystems which exist in the biosphere. Show Answer Communities exist within populations which exist within ecosystems. The Diversity of Life
How to Become a Better Survivalist Lay the groundwork: learn the basics first. ... Don't stop teaching yourself: continue to learn as much as you...
Read More »
Ammunition isn't a perishable good - if stored correctly, it can last almost indefinitely. Whether it was stored correctly or not is another...
Read More »
Spinach and other leafy green vegetables like kale, lettuce, etc. are great for burning belly fat and are very nutritious as well. There have been...
Read More »
Cisterns. A cistern is a large rain barrel. These containers are made of food-grade materials and can hold thousands of gallons of water. They're...
Read More »
Sewage treatment plants are like a miniature, off-grid version of a municipal sewage treatment plant. These systems will clean your sewage and...
Read More »
During sleep, your skin's blood flow increases, and the organ rebuilds its collagen and repairs damage from UV exposure, reducing wrinkles and age...
Read More »